
DiffGuard: Obscuring Sensitive
Information in Canary Based Protections

Jun Zhu(B), Weiping Zhou, Zhilong Wang, Dongliang Mu, and Bing Mao

State Key Laboratory for Novel Software Technology, Department of Computer
Science and Technology, Nanjing University, Nanjing, China

junzhu0406@gmail.com, zhouweipingcs@163.com, njuwangzhilong@163.com,
mudongliangabcd@163.com, maobing@nju.edu.cn

Abstract. Memory Corruption attacks have monopolized the headlines
in the security research community for the past two decades. NX/XD,
ASLR, and canary-based protections have been introduced to defend
effectively against memory corruption attacks. Most of these techniques
rely on keeping secret in some key information needed by the attackers to
build the exploit. Unfortunately, due to the inherent limitations of these
defenses, it is relatively difficult to restrain trained attackers to find those
secrets and create effective exploits. Through an information disclosure
vulnerability, attackers could leak stack data of the runtime process and
scan out canary word without crashing the program. We present Diff-
Guard, a modification of the canary based protections which eliminates
stack sweep attacks against the canary and proposes a more robust coun-
termeasures against the byte-by-byte discovery of stack canaries in fork-
ing programs. We have implemented a compiler-based DiffGuard which
consists of a plugin for the GCC and a PIC dynamic shared library that
gets linked with the running application via LD PRELOAD. DiffGuard
incurs an average runtime overhead of 3.2%, meanwhile, ensures appli-
cation correctness and seamless integration with third-party software.

Keywords: Information leak · Brute-force attacks
Canary-based protection · Canary re-randomization

1 Introduction

Buffer overflows, sensitive data exposure and related memory corruption vul-
nerabilities constitute an important class of security vulnerabilities. According
to the CNNVD Situation Report in 2016 [1], there exists a notable increase in
vulnerability number, from 5128 in 2011 to 8336 in 2016. Buffer overflows remain
the most frequently encountered [2], which brings a huge threat to network and
information security. Over the last years, several techniques have been developed
to prevent adversaries from abusing them. Stack canaries [3– 5], Address Space
Layout Randomization [6] and non-executable stack (NX/XD) [7] are widely
deployed due to the low overhead,simplicity and effectiveness. However, none of

c⃝ ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018

X. Lin et al. (Eds.): SecureComm 2017, LNICST 238, pp. 738–751, 2018.

https://doi.org/10.1007/978-3-319-78813-5_39

DiffGuard 739

these techniques has fully eliminated stack smashing attacks and several attack
vectors are still effective under all these protections [8– 11].

Stack buffer overflows are often used as a stepping stone in modern, multi-
stage exploits like Return-Oriented Programming (ROP) [15]. For instance,
Blind ROP (BROP) [13] attack requires only a stack-based memory corruption
vulnerability and a service that restarts after a crash to automatically construct
a ROP payload. Security researchers believe that only the forked networking
servers are prone to brute force attacks, based on the fact that in forking appli-
cation, all the children processes inherit/share the same memory layout from
the parent process. The attacker can try in bounded time all the possible val-
ues of canary (for SSP) and memory layouts (for ASLR) until the correct ones
are found. There exists a dangerous form of SSP vulnerability, called byte-for-
byte, which allows the attacker to try each byte of the canary independently and
to find the value of the canary with a little number of attempts. There exists
some techniques effectively armoring protections against brute-force attacks on
forking program, but they could not guarantees the correctness of child process
[14]. The different function frames of the process share the same canary word
stored in TLS, which greatly weaken the security of process data. Through CVE-
2012-3569 VMware OVF Tool format string vulnerability [12], we successfully
leaked the runtime stack data and scanned out the canary without crashing the
program.

The severity and plethora of these exploits underline the redesign of canary-
based protections. To address the aforementioned issue, we present a modifi-
cation of the SSP technique, called DiffGuard (Different function frames with
different canaries), which consist of assigning different canaries for different func-
tion frames and setting a number of new canary words for each child process
when the fork() system call is invoked. Specifically, through a lightweight, per-
frame randomizing mechanism, our design smashes the consistency issue of tra-
ditional canary based protections and enables the runtime update of the canary
values in all protected function frames of the running thread, so that newly-
forked processes get a number of fresh canaries, different from the canaries of
their parent process. Contrary to previous work [14,15], our approach makes
the canary of different frames independent of each other in both non-forking
and forking programs and guarantees correctness while preventing brute force
attacks against stack canary protection on forking programs. DiffGuard pro-
vides protection based on source code, which is a compiler-level version of tool,
implemented as a GCC plugin, incurs just 3.2% runtime overhead over native
execution, and is fully compatible with third-party libraries that are protected
with the default canary mechanism.

In summary, the main contributions of this work are the following:

1. We present DiffGuard, a robust solution for obscuring sensitive informa-
tion(canary word) in Canary based Protections.

2. The SSP byte-by-byte attack in forking applications is no longer applicable
to the DiffGuard.

740 J. Zhu et al.

3. We have evaluated the effectiveness of the recently proposed solution [14,
15] to the problem of identical canary stored in each function frames, and
demonstrate how DyffGuard overcomes its design limitations.

4. We have implemented a compiler-level DiffGuard, demonstrating the practi-
cality of our approach, which incurs a runtime overhead of 3.2% and shows
that it can be easily adopted by popular compiler toolchains to further address
security issues arising from the process creation mechanism of modern OSes.

The rest of the paper is organized as follows. We provide a background on
the existing defenses and review their weaknesses with respect to canary based
protections in Sect. 2. We detail the design of DiffGuard in Sect. 3. We describe
the implementation details in Sect. 4. We evaluate our system in Sect. 5, and we
cover some related work in Sect. 6, and conclude in Sect. 7.

2 Background

In this section, we first introduce simply the stack smashing attack and canary-
based protection. Then we briefly describe the existing work and propose a stack
scan algorithm based on the limitations of existing works bypassing canary based
protections.

2.1 Canary-based Protection and Brute-force Attacks

The general principle of stack smashing attack is to change the control flow
to execute attacker-supplied code. Stack smashing relies on the fact that most
C compilers store the saved return address on the same stack used for local
variables. The common form of buffer overflow exploitation is to attack buffers
allocated on the stack. A well-accepted countermeasure against stack smashing
attacks is the Canary-based Stacking Smashing Protection. The basic idea is
to place a canary right after the return address in stack frame to detect buffer
overflows.

Processes created with fork() are a duplicate of the calling process. Both,
father and child have the same canary value. On a forked server, where the
service is attended by children of the server process, an attacker can build brute
force attacks by guessing the value of the canary as many times as needed.

Bit-by-bit Attack: The frame-canary word is overwritten on each trial. If the
guessed word is not correct then the child process detects the error and aborts.
As consequence, the attacker does not receive a reply, which is interpreted as
an incorrect guess. The guessed value is discarded, and attacker proceeds with
another value until all the possible values are guessed.

Byte-by-byte Attack: The basic idea in leaking canaries with byte-by-byte
attack is to overflow a single byte, overwriting a single byte of the canary with
value x. If x was correct, the server does not crash. The algorithm is repeated for
all possible 256 byte values until it is found (128 tries on average). The attack
continues for the next byte until all 8 canary bytes (on 64-bit) are leaked.

DiffGuard 741

Table 1 shows the complexity of using bit-by-bit versus byte-by-byte attacks.
Most canary implementations set to zero one of the canary bytes (the most sig-
nificant in x86) for preventing the buffer overflow attacks when the overflow is
performed by a string copy functions. For this reason, the number of bytes needed
to guess is three (for 32-bit systems) or seven bytes (64-bits systems). Statisti-
cally, the bit-by-bit attack is described as a “ sampling without replacement”
and since all the values has the same probability (1c) it is modelled by the uni-
form distribution with a support range of [1, c] and a mean of c+1

2 [14]. With
the standard SSP, bit-by-bit attack needs at most 224 trails to break the system
(and 223 in average) in 32-bit systems. On a byte-by-byte attack, the process of
finding each byte is modelled as a uniform distribution whose mean is 256/2 and
the support range is [1, 256], the attacker needs at most 768 trails to break the
system (and 384 in average) in 32-bit systems. The average requests in 64-bit
systems is calculated as above. With this figures, the standard canary technique
provides a weak protection for this kind of bugs.

2.2 Previous Works

The basic idea of preventing brute force attacks focuses on re-randomizing the
reference-canary of the child right after the fork(). RAF-SSP’renew canary at
fork strategy consist in renew the value of the reference-canary of the child
process right after it is created (forked). The new value is also a random value
and every child process have a different reference-canary. However, this partial
update will result in an abort if execution reaches the frames inherited from
the parent process, as the canary cookies in these frames still hold their old
values [15]. RAF-SSP assumes that a child process never reuses inherited frames
legitimately. DynaGuard use per-thread bookkeeping mechanism to guarantee
program correctness. At a high level, DynaGuard operates as follows: after a fork
system call, and right before any instruction has executed in the child process,
DynaGuard must update the canaries in both the TLS and all inherited stack
frames in the child process.

2.3 Threats

Rather than a detailed explanation on how to bypass the SSP, we will present
only the weaknesses of the existing canary based protections that enables the
possibility of an attack. Basically, there are three ways to bypass the canary:

1. Overwriting the target data (return address, function pointer, etc.) without
needing to overwrite the frame canary.

2. Overwrite the frame-canary with the correct value.
3. Disclosure runtime memory data.

With a view of situation 1, since GCC v4.6.3, local variables are reordered
so that buffers are located first (higher addresses) and below them the function
pointers and the saved registers. Based on this fact, directly overwriting the

742 J. Zhu et al.

target data could not achieve the goal. We had discussed situation 2 in Sect. 2.1
and introduced existing works which prevent brute force attacks against canary
based protections in Sect. 2.2. So we will focus on the memory data disclosure
against the canary value.

The different function frame shared the same canary stored in TLS, which
greatly weakened the randomness of canary. Through an information disclosure
vulnerability, attackers could leak stack data of the runtime process and scan out
canary word without crashing the program. We proposed a scanning algorithm
to find out canary. The input is runtime-stack data which have been leaked
by program vulnerability(format string, dangling pointer, etc.) and platform
information. The output is the most possible canary words. The intuition here
is that all the function frames of the runtime-stack stored the same canary
words, this consistency allows us to find canary from the disclosure data. In this
algorithm, we set the size of the sliding window to memory address width (e.g.,
4 bytes for a 32-bit operating system). The scan of the runtime stack data starts
from the top of the stack indicated by the value of stack pointer ESP plus an
offset equal to the memory address width (e.g., ESP+4 for a 32-bit operating
system). We add repeated words which frequency of occurrence is more than
three times in the candidate tag. In order to find out canary from the candidate
collection, We made the following three rules to determine:

1. Terminator value: most canary implementations set the last byte of canary
to the terminator value. the value is composed of different string terminators
(CR, LF, NULL and −1).

2. Randomization: canary is a random value generated by reading the device
/dev/random. Such as 0xAAA0, 0xABA0, 0xAAB0(A and B represent hex-
adecimal numbers) could be directly removed.

3. Function prologue: The prologue of each function is fixed. In GCC version’s
canary based protections, canary is usually stored in the position of EBP+8.
Through this relative offset, we can further screen out the possible canary.

Through the above rules, We can screen out the canary value. Considering
XOR canaries implemented in Windows, the canary is generated by canaryt ⊗
EBPf , canaryt is the original canary value stored in TLS and EBPf is the
base address of the function frame. Since the upper 2 or 3 bytes are fixed, our
scanning algorithm is still working.

Table 1. Comparison of different canary based protections

Protextion Brute force attack Correctness Consistency

StackGuard F T F

RAF-SSP T F F

DynaGuard T T F

As shown in Table 1, due to the same canary in both parent and child process,
StackGuard [3] is specially prone to brute force attacks in forking applications.

DiffGuard 743

RAF-SSP could prevent brute force attacks against SSP, but could not guar-
antee correctness of the program. Althrough RAF-SSP and DynaGuard ensure
that parent process has a different canary value with the child process, but the
different frames still store the same canary in a process. These three protections
can not solve the problem of consistency. In the following sections, we discuss
how DiffGuard solves the problems discussed above while preserving application
correctness and preventing brute force attack against canary based defenses.

3 Design

At a high level, DiffGuard operates as follows: (1) for non-forking program,
DiffGuard assigns a separate canary to each stack frame in the process. (2)
for forking program, after a fork system call, and right before any instruction
executed in the child process, DiffGuard must update canaries inherited from
the parent process. Once the canaries have been updated, it can resume the
execution of the child. This runtime update renders byte-by-byte brute-force
attacks infeasible, since every function frame of forked process has a fresh canary.

(a) the canaries stored in random canary
buffer(RCB) are pushed on the stack.

(b) Epilogue check for function can1 succeeds.

Fig. 1. The design of DiffGuard allows for a complete independence of all canaries in
the process.

To the best of our knowledge, current canary protections do not provide mul-
tiple different canaries for different function frames in the process. Therefore,
DiffGuard’s design should allow each running process to generate, access and
modify all of its stack canaries at runtime. To achieve this goal, DiffGuard per-
forms a per-thread runtime randomization of all the canaries that will be pushed
in the stack during execution, using a lightweight buffer allocated dynamically
upon each thread’s creation (this buffer is stored in the heap). Figures 1 and 2
illustrate this scheme in more detail.

744 J. Zhu et al.

DiffGuard’s random canary buffer (RCB, Fig. 1a) holds all the canaries of
the runtime process. When a function is called, DiffGuard takes a canary word
from the RCB and pushes it on the function frame. As the function execution
is finished, DiffGuard detects the change of the canary word before the function
returns (Fig. 1b). To ensure DiffGuard could prevent brute force attacks against
canary based protections, we refresh the contents of the RCB. When a child
process is forked, the RCB of the parent process is copied to the child process
(Fig. 2a). Before execution starts in the child context, DiffGuard modifies all the
canary values of the RCB excepted the canaries inherited stack frames in child
process (can3). Likewise, whenever a canary-protected frame is pushed onto the
stack, the canary is token from the RCB and, once a canary-protected function
returns, the respective RCB index is diminished (Fig. 2b). The aforementioned
design allows DiffGuard to successfully provide multiple different canaries for
different function frames in the process and to modify the canary values for
newly-created processes (child process). Specially, it allows for a seamless inte-
gration with third-party software and libraries that only support the existing
stack protection mechanisms. In addition, the proposed architecture allows for
the effective handling of stack unwinding, irrespectively of whether the latter
occurs in the context of an exception, due to a signal, or setjmp/longjmp: as
the canary saved in the function frame corresponds to the one in the RCB, We
can determine the position of the canary in the RCB. Thus, DiffGuard can hook
any stack unwinding operation and modify the RCB index accordingly. In this
manner, application correctness is preserved. Apart from ensuring correctness,
the proposed design has the added benefit of not breaking compatibility with
legacy software or current canary protections. Compilers only need to add this
bookkeeping mechanism on top of their current stack canary implementations,
without altering the well-established conventions on the format of the canary
check or a function’s prologue and epilogue.

(a) The per-thread RCB is updated. (b) Epilogue check for function can1 succeeds.

Fig. 2. The design of DiffGuard modifies all the canary values of the RCB excepted
the canaries inherited stack frames in child process.

DiffGuard 745

4 Implementation

The compiler-based DiffGuard consists of a plugin for the GNU Compiler Col-
lection (GCC) and a position independent (PIC) dynamic shared library that
gets linked with the running application via LD PRELOAD. Combined, they
consist of more than 2500 lines of C++ code. Several requirements must be
accomplished to implementing DiffGuard at the compiler level, while maintain-
ing compatibility with third-party software at the same time:

1. DiffGuard must instrument all the canary push/pop events and perform its
randomization on a per-thread basis;

2. DiffGuard must hook each fork system call and update the canaries in the
child process’ RCB as described in Sect. 3;

3. DiffGuard must intercept all calls related to stack unwinding and ensure that
the RCB index gets updated accordingly.

Fig. 3. Overview of system architecture.

The first requirement is handled by DiffGuard’s GCC plugin. All other
requirements are handled by DiffGuard’s dynamic shared library (runtime),
which ensures the proper management of the RCB for every thread.

The overview of DiffGuard architecture is shown in Fig. 3. To generate a
binary secured against information disclosure vulnerabilities and brute force
attacks, developers should compile the source code of the target program with
DiffGuard. Given the source code, DiffGuard first identifies instructions that
push/pop canary events and then inserts a call to the routine (a static instru-
mentation in Sect. 4.1). At runtime, with the help of instrumented instructions,
DiffGuard initializes a number of random canaries which are stored in RCB for
the function frame being created. On every fork system call, DiffGuard updates
the per-thread RCB (a runtime library in Sect. 4.2). Later in this section, we
describe each component of DiffGuard (the static instrumentation and the run-
time library), and explain how we maintain RCB.

746 J. Zhu et al.

4.1 Static Instrumentation

The static instrumentation of DiffGuard is performed at the GCC IR [17] level,
registered as an RTL optimization pass and loaded by GCC right after the var-
track pass. The first reason for placing DiffGuard late in the RTL optimization
pipeline is to ensure that most of the important optimizations have already
been performed, and, as a result, DiffGuard’s instrumentation is never added to
irrelevant code. In addition, in this manner, we ensure that all injected instruc-
tions, which performs the necessary randomization, will remain at their proper
locations and will not be optimized by later passes.

The DiffGuard GCC plugin must modify the canary setup and check inside
each canary-protected frame, to prevent the DiffGuard-protected application
from using the standard libc canaries. This is necessary to allow the modifica-
tion of the canary at runtime without affecting any checks in libraries that are
not complied with DiffGuard. The canary initialization that occurs during the
creation of threads and processes is exactly the same in DiffGuard and in glibc,
with the only difference being that the DiffGuard canaries are stored at RCB
and the reference to the RCB is stored at a different location in the TLS area.
Therefore, the entropy of canaries is not affected, but now the TLS holds two
different types of canaries: the standard glibc canary and the DiffGuard canary.
Upon a fork, all DiffGuard canaries excepted the canaries inherited stack frames
in child process get updated without affecting any checks in modules or libraries
that use the legacy glibc canaries.

DiffGuard stores the starting address of RCB, its total size, and its index,
in the TLS. In x86-64, the reserved TLS offsets range from 0x2a0 to 0x2b8. In
particular, %fs:0x2a0 holds the base address of RCB, %fs:0x2a8 keeps the cur-
rent index in the RCB (i.e.,how many function frames are created), and finally,
%fs:0x2b8 stores the reference to the DiffGuard canary which belongs to the
function frame that is currently executing.

Figure 4 shows the canary push/pop instructions inserted by the DiffGuard
GCC plugin. Right after the function prologue, before the canary gets pushed to
the stack, the reference to the starting address of RCB must be read. Initially,
DiffGuard retrieves the address of the RCB from the TLS (1) and the index of
the next element to be written (3). Next, it reads canary from RCB (4) and
increments the buffer index (5). Finally, the canary is fetched from the RCB and
saved onto the stack. For this purpose, if no registers are free, DiffGuard needs to
spill two registers for its push/pop canary events ((1),(6)). Likewise, the canary
check in the function epilogue is modified to check against the DiffGuard canary
instead of the glibc canary (7) and decrease the index in RCB (8).

4.2 Runtime Library

The runtime library of DiffGuard maintains the RCB setup and update, as well as
the hooking of fork system calls and stack unwinding routines. The library (PIC
module) implementing that runtime is loaded via the LD PRELOAD mechanism
into the address space of the runtime application.

DiffGuard 747

Fig. 4. Assembly excerpt for a binary compiled with -fstack-protector, with and with-
out DiffGuard. The canary randomizing code added by the DiffGuard plugin is shown
on the right (highlighted).

The RCB is allocated in the heap for each thread of the running program. In
order to allocate the RCB before the main thread starts executing, we register-
in the DiffGuard runtime-a constructor routine to be called before the main
function of the application. This routine performs the RCB allocation, gener-
ates a number of random words by reading the device /dev/random and places
them in the RCB. Finally, it sets the reference, size and index of RCB in the
main thread’ s TLS. For all other threads that get created, DiffGuard hooks
the pthread create call and sets the respective TLS entries prior to calling the
start routine of each thread. Finally, a routine to free the allocated RCB for each
thread that finishes execution is registered via the pthread cleanup push(/pop)
mechanism.

To ensure that the canaries in RCB of each thread are sufficient to use,
DiffGuard marks the final page in the RCB as write-only and registers a signal
handler for the SIGSEGV signal. Inside the signal handler, DiffGuard detects
whether the fault is due to DiffGuard’s instrumentation (i.e., when DiffGuard
tries to read a canary out the boundary of the RCB) and allocates additional
memory for the RCB if necessary.

As there may be multiple running threads, and the exception handler may
execute in the context of a different thread than the one that generated the
SIGSEGV, DiffGuard maintains a hashmap of all the running threads and their
TLS entries. Inside the signal handler, DiffGuard iterates through all the threads
in the hashmap and examines whether the memory location that caused the fault
falls within an allocated RCB.

Lastly, in order to ensure that the RCB’ index will correspond to active frame,
DiffGuard checks for any stack unwinding and revises the index of RCB. This is
based on the simple observation that, as the canary saved in the function frame

748 J. Zhu et al.

corresponds to the one in the RCB, We can determine the position of the canary
in the RCB. DiffGuard hooks the following calls that result in stack unwinding:
cxxabiv1:: cxa end catch and (sig)longjmp. In the cases of siglongjmp and

longjmp, the new value of the stack pointer is retrieved from the contents of the
jmpbuf entry of the jump buffer that is passed to the calls, and we adjust the

RCB index according to the canary in the stack frame pointed to by ESP.
Once all the components for ensuring the correctness of the canary random-

izing are in place, DiffGuard provides different canaries for different function
frames in the process. Meanwhile, DiffGuard registers a hook for the fork sys-
tem call. Once fork is executed, in the context of the child process, and before
fork returns, DiffGuard updates the canaries stored in child process’ RCB except
for the canaries of the function frames inherited from the parent process.

5 Evaluation

In this section we evaluate the performance overhead of DiffGuard and its
effectiveness in protecting against byte-by-byte canary brute-force attacks. For
our measurements we use the SPEC CPU2006 benchmark suite [18], as well
as a series of popular (open-source) server applications. Overall, our GCC-
based implementation of DiffGuard incurs an overhead ranging from 0.454%
to 11.746%, with an average of 3.2%.

5.1 Effectiveness

We evaluate the effectiveness of DiffGuard from the following two aspects:

1. The identity of each function frame: DiffGuard ensure that each stack frame
has its own canary. In order to verify the independence of canary in differ-
ent stack frames, we instrument the SPEC CPU2006 benchmark suite, the
purpose is to create a scan routine which is responsible for disclosing run-
time stack data. Through stack sweeping algorithm introduced in Sect. 2,
we confirmed that DiffGuard defends against the canaries disclosure attacks
perfectly. In the contray, the existing canary based protections are prone to
canaries disclosure attacks, and we have more than 90% probability to find
canary when the number of function frames on runtime stack is greater than
10.

2. Preventing brute force attacks against canary based protections: We con-
firmed that DiffGuard defends against a set of publicly-available exploits
[13,19] targeting the Nginx web server, which rely on brute-forcing stack
canaries using the technique outlined in Sect. 2.

To verify that DiffGuard does not affect software correctness, we evaluated
it over the SPEC CPU2006 benchmark suite, and also applied it to a variety
of popular forking applications, such as the Apache and Nginx web servers, and
the MySQL database servers. We observed no incompatibilities or any altered
program functionality. As a final step of our correctness evaluation, we manually

DiffGuard 749

stress-tested DiffGuard over a series of scenarios that included combinations of
multi-threaded and forking programs that executed setjmp/longjmp and trig-
gered exceptions. In all cases we verified that DiffGuard successfully randomized
the stack canaries (RCB) for all newly-created processes without causing any
unexcepted behavior.

5.2 Performance

To obtain an estimate of DiffGuard’s overhead on CPU intensive applications, we
utilized the SPEC CPU2006 benchmark suite. The applications were compiled
with the -fstack-protector option enabled. All experiments were performed on a
virtual machine running Debian GNU/Linux v8, equipped with two 3.50GHz
four-core CPUs and 8GB of R. Figure 5 summarizes the performance overhead
of our GCC-based implementation of DiffGuard. All binaries were compiled
with the DiffGuard plugin and had the -fno-omitframe-pointer compiler option
asserted. DiffGuard incurs an average slowdown of 3.2% on the SPEC CPU2006
benchmarks. In all cases, the overhead of the GCC implementation of DiffGuard
is below 11.74% for the SPEC CPU2006 benchmarks.

Fig. 5. The runtime overhead of DiffGuard (normalized over native execution).

6 Related Work

Canary-based stack protections were popularized by StackGuard [3]. Subse-
quently, ProPolice [20] introduced a series of GCC patches for StackGuard,
which, among others, reordered the local variables in the stack, placing buffers
after (local) pointers and function arguments in the stack frame. ProPolice was
subsequently integrated in GCC, by RedHat, as the Stack Smashing Protector
(SSP). As modern stack protectors follow a design similar to that of SSP, Diff-
Guard’s architecture can be (easily) adopted by popular compilers due to its low
performance overhead. With respect to preventing canary brute-force attacks,
RAF-SSP [14] and DynaGuard [15], similarly to DiffGuard, aim to refresh stack-
based canaries in networking servers. However, upon a fork system call, RAF SSP

750 J. Zhu et al.

only updates the canary in the TLS area, ignoring the frames inherited by the
parent process. This design fails to guarantee program correctness. DynaGuard
use per-thread bookkeeping mechanism to guarantee program correctness, but
the function frames of per-thread shared the identical canary word. This kind of
identity makes it possible to be leaked.

A series of mechanisms have been proposed to protect the integrity of return
addresses. RAD [21] is implemented as a compiler patch and creates a safe area
where a copy of the return address is stored. Similar defenses have been imple-
mented at the micro-architectural level [22], using binary rewriting [22], or by
utilizing a shadow stack [23]. Apart from the fact that the previous mechanisms
do not tackle the same problem as DiffGuard, they have not gained traction,
mainly due to compatibility and performance issues (e.g., such mechanisms nul-
lify several micro-architectural optimizations, like return address prediction) [25].
On the contrary, DiffGuard enhances a mechanism that has already seen wide
adoption, without breaking accepted conventions around the format of the func-
tion prologue and epilogue, or the stack layout.

7 Conclusion

In this paper, we address a limitation of the current canary based protection
mechanisms, which allows for brute-forcing the canary, byte-by-byte, in fork-
ing applications and stack-sweeping the canary, via information disclosure in
non-forking applications. We resolve this issue by providing different canaries
for different frames and proposing the dynamic update of the canaries in forked
processes upon their creation. We present a design that utilizes a per-process,
in-memory data structure to update the stack canaries at runtime, and we pro-
totype the proposed architecture in DiffGuard, which is a compiler-based tool
operating at the source code level. We evaluate that DiffGuard incurs an average
overhead of 3.2% and can be easily integrated to modern compiler toolchains.

Acknowledgments. We would like to thank Theofilos Petsios et al. for their open
source implementation of DynaGuard which helps ours quickly getting start of out
work. When we have trouble in using SPEC CPU2006, Theofilos Petsios give us some
advice. This work was supported in part by grants from the Chinese National Natural
Science Foundation (61272078).

References

1. China National Vulnerability Database of Information Security(CNNVD)[Z/OL].
http://www.cnnvd.org.cn/

2. van der Veen, V., dutt-Sharma, N., Cavallaro, L., Bos, H.: Memory errors: the past,
the present, and the future. In: Balzarotti, D., Stolfo, S.J., Cova, M. (eds.) RAID
2012. LNCS, vol. 7462, pp. 86–106. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-33338-5 5

3. Cowan, C., Pu, C., Maier, D., Hintony, H., Walpole, J., Bakke, P., Beattie, S.,
Grier, A., Wagle, P., Zhang, Q.: StackGuard: automatic adaptive detection and
prevention of buffer overflow attacks

DiffGuard 751

4. Etoh, H.: GCC extension for protecting applications from stack-smashing attacks
5. Microsoft.GS (Buffer Security Check) (2002). https://msdn.microsoft.com/en-us/

library/8dbf701c.aspx
6. PaX Team: Address Space Layout Randomization (2003). https://pax.grsecurity.

net/docs/aslr.txt
7. PaX Team: Non-executable pages design & implementation (2003). https://pax.

grsecurity.net/docs/noexec.txt
8. Bulba and Kil3r: Bypassing stackguard and stackshield. Phrack, 56 (2002)
9. Richarte, G.: Four different tricks to bypass stackshield and stackguard protection,

World Wide Web, 1 (2002)
10. Shacham, H., et al.: On the effectiveness of address-space randomization. In: Pro-

ceedings of the 11th ACM Conference on Computer and Communications Security.
ACM (2004)

11. Buchanan, E., et al.: When good instructions go bad: generalizing return-oriented
programming to RISC. In: Proceedings of the 15th ACM Conference on Computer
and Communications Security. ACM (2008)

12. CVE-2012-3569. http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-
3569

13. Bittau, A., Belay, A., Mashtizadeh, A., Mazieres, D., Boneh, D.: Hacking blind.
In: 2014 IEEE Symposium on Security and Privacy, pp. 227–242 (2014)

14. Marco-Gisbert, H., Ripoll, I.: Preventing brute force attacks against stack canary
protection on networking servers. In: 12th IEEE International Symposium on Net-
work Computing and Applications (NCA), pp. 243–250, August 2013

15. Petsios, T., Kemerlis, V.P., Polychronakis, M., Keromytis, A.D.: Dynaguard:
armoring canary-based protections against brute-force attacks. In: Proceedings of
the 31st Annual Computer Security Applications Conference, ACSAC 2015, pp.
351–360. ACM, New York (2015)

16. Bryant, R., David Richard, O.H., David Richard, O.H.: Computer Systems: A
Programmer’s Perspective, vol. 2. Prentice Hall, Upper Saddle River (2003)

17. Stallman, R.M.: The GCC Developer Community: GNU Compiler Collection Inter-
nals (2017). https://gcc.gnu.org/onlinedocs/gccint/

18. Henning, J.L.: SPEC CPU2006 benchmark descriptions. ACM SIGARCH Comput.
Archit. News 34(4), 1–17 (2006)

19. Metasploit. Nginx HTTP Server 1.3.9-1.4.0 - Chuncked Encoding Stack Buffer
Overflow (2013). http://www.exploit-db.com/exploits/25775/

20. Etoh, H.: GCC extension for protecting applications from stack-smashing attacks
(2005). http://goo.gl/Tioc4C

21. Chiueh, T.-C., Hsu, F.-H.: RAD: a compile-time solution to buffer overflow attacks.
In: Proceedings of ICDCS, pp. 409–417 (2001)

22. Park, Y.-J., Lee, G.: Repairing return address stack for buffer overflow protection.
In: Proceedings of CF, pp. 335–342 (2004)

23. Corliss, M.L., Lewis, E.C., Roth, A.: Using DISE to protect return addresses from
attack. ACM SIGARCH Comput. Archit. News 33(1), 65–72 (2005)

24. Sinnadurai, S., Zhao, Q., fai Wong, W.: Transparent runtime shadow stack: pro-
tection against malicious return address modifications (2008). http://citeseerx.ist.
psu.edu/viewdoc/summary?doi=10.1.1.120.5702

25. Dang, T.H., Maniatis, P., Wagner, D.: The performance cost of shadow stacks and
stack canaries. In: Proceedings of ASIACCS, pp. 555–566 (2015)

