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Abstract. Software reverse engineering has been widely employed for
software reuse, serving malicious purposes, such as software plagiarism
and malware camouflage. To raise the bar for adversaries to perform
reverse engineering, plenty of work has been proposed to introduce obfus-
cation into the to-be-protected software. However, existing obfuscation
methods are either inefficient or hard to be deployed. In this paper, we
propose an obfuscation scheme for binaries based on Return Oriented
Programming (ROP), which aims to serve as an efficient and deploy-
able anti-reverse-engineering approach. Our basic idea is to transform
direct control flow to indirect control flow. The strength of our scheme
derives from the fact that static analysis is typically insufficient to pin-
point target address of indirect control flow. We implement a tool,
ROPOB, to achieve obfuscation in Commercial-off-the-Shelf (COTS)
binaries, and test ROPOB with programs in SPEC2006. The results
show that ROPOB can successfully transform all identified direct con-
trol flow, without causing execution errors. The overhead is acceptable:
the average performance overhead is less than 10% when obfuscation
coverage is over 90%.

Keywords: Obfuscation · Return-oriented programming
Reverse engineering

1 Introduction

Along with the booming development of software market, illegal reuses of soft-
ware with malicious purposes, such as software plagiarism and malware camou-
flage, bring a lot of negative influence. Software plagiarism happens when the
adversaries develop and release software with components “stolen” from pro-
grams owned or licensed under others’ names. Malware camouflage refers to
cases where the adversaries repackage released software to embed malicious pay-
loads, and then publish the resulted in “malware” with the name of the original
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software. These intentional torts are causing billions of dollars worth of damage
to the software market every year [1].

Commercial softwares always appeal to adversaries for malicious reuse. As
most of them are released in the form of binaries, adversaries can analyse the
binaries to extract their working logic to reuse them. The analysing process
is commonly termed as software reverse engineering. A major line of effort on
preventing software from being reverse engineered is to introduce obfuscation
into software. Basically, obfuscation deliberately transforms readable codes into
obfuscated codes that are difficult for humans or tools to understand, aiming to
conceal the original logics of the software.

Plenty of techniques have been proposed to achieve software obfuscation in
different phases of reverse engineering. Linn and Debray propose to obfuscate
executable code to disrupt static disassembly [2], which is often the first step
of binary reverse engineering. Igor et al. propose to keep control flow under
cover by signal handlers [3]. However, leveraging signal mechanisms to handle
control flow introduces significant overhead (typically higher than 21%). and it
is not thread-safe. Chen et al. leverage the characteristic - information tracking
support of Itanium processor, to obfuscate control flow with exception handling
[4]. This mechanism is more efficient but can only be deployed when the required
processors are available.

Before we introduce our approach, we first briefly explain the concept of
ROP. ROP is a type of advanced code-reuse attack proposed by Hovav Shacham
in [5]. A ROP attack hijacks the control flow to a sequence of code pieces (or
“gadgets”) that end with a return instruction. The ROP attack will pre-set the
return address for the return instruction in each gadget on the stack, to make
sure these gadgets are executed sequentially.

RopSteg [6] is proposed for code protection that attempts to hide selected
instruction sequence by executing their “unintended matches” located elsewhere.
And instruction snippet that they can hide is much smaller than the whole
program.

In this paper, we propose a new ROP-based approach to perform software
obfuscation. The core idea of our approach is to take advantage of ROP to obfus-
cate control flow in basic block granularity as follows. First, we disassemble a
to-be-protected ELF file and divide executable code into basic blocks. Then, do
some instrumentation on basic blocks to convert them into gadgets. We trans-
form all identified direct control flow and hide them by ret instruction. Finally,
add all those gadgets and designed payload into original file and leverage binary
rewrite to produce obfuscated file. Note that the designed payload will be used
for control flow transfers and will be stored in a newly added payload section. As
we use ROP payload and gadgets to complete control flow transfer, static reverse
engineering methods can not find the real control flow, even though they can
disassemble software correctly. And it is a lightweight method to do obfuscation
with ROP. As ROP works only in user space, does not involve signal handler
or other kernel space, the whole process of control flow transfer is quicker than
signal methods theoretically. And ROP method can be thread-safe.
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Our contributions are as follows:

– We propose a novel ROP based approach to achieve control flow obfuscation.
Our experiment proves that this method is effective and practical against
static reverse engineering analysis.

– Our obfuscation approach is efficient and widely deployable.
– We develop a tool ROPOB to implement our approach. Experiment results

show that ROPOB can correctly transform all identified direct control flow.
The average overhead introduced by our obfuscation is less than 10% when
obfuscation coverage is above 90%.

The remainder of this paper is organized as follows. In Sect. 2, we explain
the overview of our approach. Section 3 details our design of ROPOB. Then we
present the evaluation of our approach in Sect. 4. Section 5 summarizes related
work and Sect. 6 discusses some issues. Section 7 concludes this paper with future
work.

2 Overview

Our goal is to convert ELF (Executable and Linkable Format) files to ROP-
obfuscated ones, whose control flow information has been concealed, so that
static de-obfuscation methods will fail to construct the control flow graph (CFG).
The obfuscated files are semantically equal to the original ones. In this section
we will give an overview of our method.

We consider a model, in which the defender develops a commercial software,
prepares to obfuscate and release its binary version, and the adversary aims
to reverse engineer the binary for malicious reuse. The following assumptions
should be satisfied in this model:

– The un-obfuscated binary file is in ELF file format (with or without symbol
information);

– The obfuscated binary file is supposed to run on unmodified Linux systems;
– The adversary only employs static reverse engineering tools, such as IDA Pro

[7], to analyse the obfuscated binary file.

Our approach takes a to-be-protected ELF file as input and outputs the
obfuscated version. The workflow of our approach is shown as Fig. 1(a), which
consists of four major steps:

– Disassemble the text section of an ELF file and divide executable code into
basic blocks;

– Do some instrumentation on basic blocks to convert them into gadgets, which
are ended with ret instruction;

– Write all those gadgets and designed payload into an assembler file and assem-
ble it into a new ELF file. Note that the designed payload is a list of start
address of gadgets. Its function is to guide the execution of all the gadgets.

– Copy text and payload section of new ELF file into original ELF file to pro-
duce our obfuscated file;
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Fig. 1. Workflow of our approach

When the above steps are finished, we wipe out the original text section
from the resulting ELF file. Otherwise the adversary can still recover the control
flow information from this section. Note that all sections copied to the obfuscated
ELF, including the new text section and the payload section, do not overlap with
any previous sections. Notably, we maintain the data section to be intact, which
will be directly reused by the obfuscated code section. Therefore, we essentially
maintain the data integrity.

In summary, all our work is in user space and does not involve kernel space.
Furthermore, our method can invalidate all static de-obfuscation techniques,
because there is no control flow information in static analysis. Meanwhile, it can
increase the difficulty for dynamic de-obfuscation methods. Because there is no
function call in our obfuscated files, it is hard to extract high level semantics,
even when attackers find an execution path dynamically.

The workflow of our approach is straightforward. However, there are multiple
challenges to be tackled in the workflow, which are summarized as follows:

– Basic blocks can’t be partitioned thoroughly. Therefore, some indirect control
flow may jump into the body of basic block (or gadget), rather than the
entrance. That will fail payload entrance check (used for gadget location when
ROP runs).

– Indirect control flow can’t be analysed statically. It is necessary to make
indirect control flow jump to destination correctly. We design a control flow
map table to solve this problem.

– We must keep data access correct, with control flow obfuscated. We design
a reconstruction framework to reuse the whole data sections of original pro-
grams.

Figure 1(b) depicts an instance of our design. The dotted line in this figure
represents there is a control flow path from BBi to BBj in the original file
(BB means basic block). After basic blocks (BB) are transformed to gadgets
(Gadget), we maintain the control flow path from BBi to BBj through designed
payload. Before Gadgeti executes ret, we push the address of Gadgetj onto the
stack. Therefore, we can direct the control flow to Gadgetj .
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3 Design and Implementation

We design our method as a tool, called ROPOB, which takes an ordinary ELF file
as input and generates an ROP-obfuscated ELF file with the same semantic as
output. This tool has a basic reconstruction framework, which supports instru-
mentation works on the input ELF file. Apart from this framework, there are
other challenges needed to be resolved in ROPOB, such as basic block partition
and control flow integrity. We will present all technical details in this section.

3.1 Reconstruction Framework

Our goal is to transform an original ELF file to a ROP-obfuscated one, keeping
the semantics equal. We design a framework to reconstruct an ELF file, and
to support any assembly-level instrumentation, including our ROP-obfuscation
work. This framework mainly analyzes the assembly code, which is obtained
from disassembling the original ELF file, and then recompiles it into a new ELF
file. Our reconstruction framework is shown in Fig. 2.

Fig. 2. Reconstruction framework

Generally speaking, the text section of original ELF file starts from address
0x8048xxx. In our reconstruction framework, we extract the text section from
the original ELF file, disassemble the text section and divide the text section into
basic blocks. Meanwhile the control flow information between basic blocks are
collected. Thus, we can apply any assembly-level instrumentation work on those
basic blocks, such as our ROP obfuscation instrumentation. Then we use the
rewritten basic blocks and previously collected control flow information to write
an assembly file. After recompiling the assembly file, we can get an intermediate
ELF file, whose text section is lowered down to address 0x7000000. The reason
for changing base of text section to 0x7000000 is that we will copy the text section
into the original ELF file as new text section. As we do some instrumentation
works, the scale of text section in intermediate file is larger than that of the
original one. So if we set the base address of text section in intermediate file the
same as that of the original one, some data sections of the original file will be
destroyed, which is not expected. We integrate new text section and some new
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data sections into original file by objcopy tool after recompilation in order to
reuse all data sections from the original file. The last step of our framework is to
modify the program header table to include new text section and data sections,
whose addresses are all above 0x7000000. For some security reasons, we need
to wipe out the original text section in case of control flow information leak.
By means of this framework, we can maintain the same semantics between the
original file and the ROP-obfuscated file.

3.2 Basic Block Partition

It is common sense that control flow information exists in relationship between
basic blocks. A basic block is a straight-line code sequence, with no branches in
except to the entry and no branches out except at the exit. The rules we use to
divide basic blocks are as follows:

– A control flow related instructions, like a jmp/jcc/call/ret instruction, indi-
cates an exit of a basic block. The target operand of a direct jmp/jcc/call
instruction is an entrance of a basic block.

– We ignore the target operand of indirect jmp/jcc/call instructions.
– The next instruction of a jmp/jcc/call/ret instruction is an entrance of a

basic block.

We do not deal with the target operand of indirect jmp/jcc/call instructions
(control flow related instruction, CFRI for short), because the target operand is
unknown in static method. Although it is possible to explore some information
through some data sections, such as finding a jump table in rodata section, it
is hard to locate the boundary of a jump table. However, some basic blocks
cannot divided correctly, for example, an entrance of a jump table is not found.
To deal with this problem, we design a control flow mapping table, which will
be discussed in next subsection.

3.3 Control Flow Mapping Table

The control flow information of direct CFRI is obvious. However, we can’t work
out control flow information of indirect CFRI, whose target operand is often
determined by some data sections during the runtime. As we have mentioned,
we reuse all data sections from original file, and the target addresses computed
by original indirect CFRIs are the same as those calculated by indirect CFRIs
in new text section of ROP-obfuscated file. Under the circumstances, if we make
no change to the target address calculated by indirect CFRI in new text section,
control flow will be guided into wiped text section which will crash the program.
So, we will redirect such addresses and design a control flow mapping table
to solve this problem. Figure 3 illustrates the principle of control flow mapping
table.

There is a basic block (BB1) of bzip2 presented in Fig. 3. After instrumen-
tation, we get Gadget1. 0x804cac4 and 0x7007dff are entrance addresses. The
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Fig. 3. Control flow mapping table

control flow mapping table is in the right side of Fig. 3. If the target of an indi-
rect CFRI is entrance of BB1, we will calculate the target address first and
check control flow mapping table to locate the correct target address 0x7007dff
in Gadget1.

It is tricky to solve the problem presented in Sect. 3.2 by means of control
flow mapping table in Fig. 3. Just thinking that if our basic block partition
misses a basic block, whose entrance is 0x804caca in BB1 and an indirect CFRI
jumps to 0x804caca, we can’t find any table entry to match 0x804caca. But
the offset between 0x804caca and 0x804cac4 equals that between 0x7007e05 and
0x7007dff, with the acknowledgement that we only apply instrumentation at the
end of basic block, rather than in the middle. Therefore we can locate 0x7007e05
correctly.

3.4 ROP Instrumentation

Our goal is to use ROP technique to hide control flow information, so that static
method can’t analyze the control flow information. Control flow from one basic
block to another is completed by ret instruction and ROP payload. The payload
is a list of entries of all generated gadgets, converted from original basic blocks.
We design different instrumentation policy for different control flow cases.

– Case 1: For each basic block ended with non-CFRI (maybe mov or add
instruction), we push the start address of next gadget onto the stack. Note
that the next gadget is transformed from the basic block next to it and its
address is stored in the payload;

– Case 2: For each basic block ended with direct CFRI, there is only one
target address of call/jmp. If the direct CFRI is call/jmp, we push the start
address of next gadget onto the stack like Case 1. But the next gadget is
transformed from the basic block starting from the target address. Figure 3
shows a simple example about direct jmp (Note that [gadget1021] stores the
start address of next gadget). The difference between call and jmp is that for
call instruction, return address is pushed onto the stack at first. If the direct
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Fig. 4. Jcc transformation

CFRI is jcc with two target addresses, we provide two paths at the end of
gadgets and deal with each path like direct jmp instructions, or we can use
characteristic of ROP to transform two paths into one unified form. We will
discuss this transformation later in this subsection;

– Case 3: For each basic block ended with indirect CFRI, we take advantages of
control flow mapping table to relocate the target address. Then the remaining
work is like Case 2;

– Case 4: For each basic block ended with ret instruction, nothing is to be
done. The return address has been pushed in the stack previously;

Figure 4 tells how we transform jcc instruction into a unified form. There
is a branch from BB1 to two destinations: BB2 and BB3 in program bzip2.
If condition is met at instruction ‘je 0x804da42’ (ZF = 1), control flow goes
to BB3 . Otherwise, control flow goes to BB2 . Accordingly, there are gadgets,
G2 and G3 , in payload. The difference of start address between G2 and G3 in
payload is offset, a parameter shown in Fig. 4. Then we can get the condition flag
and use it to compute the proper target address. For example, we use register eax
to store address of G2 in payload, and then we calculate the target address with
the help of flag and offset. The flag is the conditional judgment bit in eflags.
We ensure that if condition is satisfied, eax points to G3 in payload. Otherwise,
register eax points to G2 in payload.

3.5 Special Case of Data Access

In ROPOB, we reuse all data sections from original file. The major data accesses
are absolute addressing, with addresses in data sections directly. However, there
are special cases - access data with relative addressing. Since we have dropped
the new text section to a low address space - 0x7000000, it is a mistake to access
data relative to instructions in new text section. This problem is addressed in
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Oxymoron [8]. Here we hold the same viewpoint as Oxymoron, where the authors
believe this is not a general case and can be located statically.

4 Evaluation

We tested our method on fourteen programs in SPEC2006, and succeed to obfus-
cate those programs and evaluate our method in three aspects, including control
flow concealing, program size and program execution speed. Our experiments
are performed on CentOS 6.6 x86, with 2G memory and kernel version - 2.6.32.

4.1 Control Flow Concealing

There is no standard for obfuscation strength. But in the aspect of concealing
control flow, we work out two metrics to measure obfuscation degree of our
method. They are CFG-level stealth and instruction-level stealth. We measure
those two metrics on all the fourteen programs in SPEC2006.

CFG-Level Stealth. We choose CFG fragmentation to measure it. Our method
hides paths between basic blocks, so an original big CFG is cut into small pieces.
We use the ratio of independent CFG (a function is an independent CFG) to
measure the degree of fragmentation (DF ).

DF = ObCFG/OrCFG

ObCFG represents the number of independent CFG in obfuscated program.
OrCFG is the number of independent CFG in original program. The bigger DF
is, the more difficult can the reverse engineering analysis dig out control flow
information statically. The result is shown in Table 1. The average DF is 22.79
(from 8.32 to 63.66).

Instruction-Level Stealth. Direct CFRIs are major leakage points of control
flow information. The direct CFRIs between basic blocks must be replaced to
hide control flow information. We check whether direct CFRIs exist in original
and obfuscated programs and analyze those existing cases. The columns jmpdec,
calldec, jccdec in Table 2 represent the decrease degree of CFRIs, which is calcu-
lated by the following formula.

DecCFRI =
OrC(CFRI) − ObC(CFRI)

OrC(CFRI)

OrC(CFRI) represents the number of direct CFRIs in original program and
ObC(CFRI) is the count of direct CFRIs in obfuscated program.

It is obvious to find that there are almost no direct jmp instructions in our
obfuscated programs. While direct call and jcc instructions are still there, these
cases don’t leak any control flow information. Because direct call instructions in
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Table 1. CFG fragmentation

Programs Original Obfuscated DF

astar 97 1367 14.09

bzip2 81 1942 23.98

gobmk 2535 32453 12.80

h264ref 531 14166 26.68

hmmer 501 11451 22.86

lbm 28 233 8.32

libquantum 108 1509 13.97

mcf 33 451 13.67

milc 244 3962 16.24

namd 105 6684 63.66

perlbench 1723 53973 31.33

sjeng 143 4904 34.29

soplex 900 15575 17.31

sphinx3 335 6670 19.91

obfuscated programs all call the same one function, which is used for indirect con-
trol flow redirection. And direct jcc instructions inherit from original programs
but the targets of jcc are inside basic blocks in obfuscated programs rather than
outside basic blocks. So control flow information remains under cover through
our method. The average DecCFRI of jmp is 96.85% and that of call is 94.80%.
The DecCFRI of jcc is negative. Because including inherited jcc instructions,
there are other jcc cases in our inserted functions. If we do not take inherited
jcc instructions into account to measure DecCFRI, the DecCFRI of jcc will be
modified as

DecCFRI =
2 ∗ OrC(jcc) − ObC(jcc)

OrC(jcc)
.

Fig. 5. Size expansion ratio
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Table 2. CFRI Decrease. jmpor, callor, jccor represents the number of CFRI in
original file; jmpob, callob, jccob represents the number of CFRI in obfuscated file.

Programs Original Obfuscated DecCFRI

jmpor callor jccor jmpob callob jccob jmpdec calldec jccdec jcc real

astar 174 400 587 11 9 595 93.71% 97.74% −1.36% 98.64%

bzip2 356 338 1058 8 30 1065 97.73% 91.10% −0.67% 99.33%

gobmk 4475 9112 13076 17 66 13085 99.63% 99.27% −0.07% 99.93%

h264ref 2575 2729 7346 43 373 7354 98.33% 86.32% −0.11% 99.89%

hmmer 1697 3542 5075 47 41 5082 97.26% 98.85% −0.13% 99.87%

lbm 26 73 83 4 8 90 84.64% 89.06% −8.42% 91.58%

libquantum 252 452 592 3 8 599 98.84% 98.25% −1.16% 98.84%

mcf 64 89 230 3 8 238 95.34% 90.98% −3.47% 96.53%

milc 528 1543 1367 19 17 1374 96.38% 98.90% −0.52% 99.48%

namd 1110 1129 4206 14 23 4213 98.72% 98.00% −0.16% 99.84%

perlbench 10167 13869 25777 25 221 25789 99.75% 98.40% −0.05% 99.95%

sjeng 940 1102 2504 8 24 2511 99.16% 97.85% −0.28% 99.72%

soplex 2881 4210 6011 31 719 6018 98.92% 82.92% −0.12% 99.88%

sphinx3 850 2502 2629 21 12 2637 97.50% 99.52% −0.31% 99.79%

The real DecCFRI of jcc instructions is listed in the last column of Table 2.
The average DecCFRI of jcc instructions is 98.80%.

4.2 Size Measurement

The scales of programs expand in different degrees after being obfuscated by
our method. We measure size of text section and size of ELF file in original and
obfuscated program respectively. Figure 5 describes the expansion ratio of text
section and file size. The mean expansion ratio of text section is 1.81 (from 1.48
to 2.12), and the mean expansion ratio of file size is 2.66 (from 1.46 to 3.42).
There are several factors leading to size expansion. Our instrumentation work
increases the size of text section. Additionally, we integrate some data sections,
such as payload and mapping table, into our obfuscated program, which certainly
increases the file size.

4.3 Overhead

As we translate direct CFRIs into indirect ones, memory accessing time will
increase and CPU pipe-line will be affected and slow down. Theoretically, our
method will increase overhead of programs. We apply our method to those four-
teen programs with 100% obfuscation coverage. The overhead is unacceptable
and is shown in Fig. 6. There are twelve programs’ overhead beyond 200%, with
the highest of 1194.74% (libquantum). The average overhead in Fig. 6 is 524.87%
(from 15.8% to 1194.74%). To cut down overhead, we adopt an optimization pol-
icy of decreasing the obfuscation coverage.

Under our optimization policy, we gain acceptable (overhead,coverage) pairs.
We test our obfuscated programs under four coverage standards (95%, 90%, 85%,
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Fig. 6. Overhead with 100% obfuscation coverage

0%). Our optimization policy works on nine programs, depicted in Fig. 7(a). The
mean overhead of 95% obfuscation coverage is 20.31% (2.0%–69.54%). That is a
great progress, comparing to 100% obfuscation coverage in Fig. 6. When obfusca-
tion coverage is decreased to 90%, the mean overhead is 7.86% (0.91%–31.45%).
And for each program, the overhead is cut down to 10% or less, except mcf,
whose overhead is 31.45%. As obfuscation coverage comes to 85%, all the nine
programs’ overhead are below 8.49%, and some programs’ overhead approximate
to 0%.

Other five programs’ overhead is not shown in Fig. 7(a), as their overhead
is still very high (mean overhead is up to 110.41%, in arrange from 61.9% to
244.61%) even when obfuscation coverage is 0%. These five programs’ overhead
are shown in Fig. 7(b). We analyze these five programs deeply, and find that they
execute indirect CFRIs frequently. Our method utilizes a function to redirect
indirect control flow during the runtime. That is time-consuming. No matter
how low our obfuscation coverage is, the overhead is still high.

(a) Nine optimized programs’ overhead (b) Other five programs’ overhead

Fig. 7. Overhead with four kinds of obfuscation coverage
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5 Related Works

ROP, proposed by Hovav Shacham to enhance return-into-libc attack, is a code-
reuse technique [5]. Its execution unit is gadget, a piece of instruction snippet
ended with ret instruction. ROP uses payload on stack and ret instruction to
organise its control flow. This code-reuse technique is developed by researchers in
many ways. Jiang find gadgets ended with jmp instructions can also be used for
code-reuse attacks [9]. Q is an automatic method to construct ROP payload to
bypass ASLR defense [10]. Printable ROP, whose payload is all printable ASCII
bytes, is another branch of ROP attacks [11]. Although defenses against ROP
vary too much, such as ASLR , new attack methods can still utilize ROP to
launch attacks, such as JIT ROP [12], side channel ROP [13,14]. Not only on
traditional PC platform, but also on mobile devices, ROP is an effective way to
attack [15–17].

Binary obfuscation focuses on fighting against reverse engineering analysis.
Cohen is the first to present binary obfuscation. He changes the layout of instruc-
tions to prevent disassembling [18]. Later Igor finds another way to fool disas-
sembler by inserting junk bytes to replace useless instructions [3]. This way is
based on an assumption of disassembly algorithms, which treats CFRIs and
their targets as hints of instructions’ beginning. Nevertheless, Igor does more
than that. They utilize signal handling mechanism to conceal control flow infor-
mation. Their method is effective for obfuscation. However, overhead of their
method is unacceptable even their obfuscation coverage is 90%.

Control flow obfuscation aims to protect programs’ semantics from being
analysed. One way is to hide control flow information like Igor and Chen [4]. Chen
takes advantages of characters of Itanium processors, which support information
flow tracking. Their method resolves the problem of high overhead but it is not
in common use on x86. Another way is to make CFG complicated, so that reverse
engineering can’t reconstruct high-level program structure. Xin et al. attaches
many useless or semantics-equal paths to CFG [19] and fakes a different CFG.
Thus some analysis methods based on birthmark or pattern matching fail to dig
out real semantics of programs. Control flow flattening also changes the whole
CFG of a program [20]. They obfuscate C++ source code to a large loop, and
use switch statements to judge which case to be executed in each iteration. Yet
their work is based on source code.

ROPSTEG [6], also leverages ROP to perform binary obfuscation, but is dif-
ferent. First, ROPSTEG aims to make use of unintended instructions to hide
sensitive instructions, while our approach takes advantage of ROP payload and
gadgets to hide direct control flow in the form of indirect control flow. And
chaining payloads by gadget and ret instruction is the core idea of ROP, other
than unintended instructions. Consequently, major control flow information can
still be recovered from binary obfuscated by ROPSTEG, which, however, is com-
pletely hidden by our approach. Second, applicability and obfuscation strengthen
of ROPSTEG are restricted by certain properties of the to-be-protected binary,
such as the available unintended instructions. To the contrary, our approach has
no requirements on the binaries.
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Virtualization based methods are also effective for obfuscation. [21–25] men-
tioned, it is possible to use emulated instruction sets to rewrite programs. Pro-
grams’ representation is neither IA32 instructions nor ARM instructions and
becomes difficult to analyze.

On the opposite side, software reverse engineering is to analyse programs
and dig out useful information [26–30]. It can be classified into two kinds, static
method and dynamic method. Static reverse analysis often start with disassem-
bling and translate binary code into high level programs. IDA and Hex-Ray are
practical business de-compiler tools [31]. Phoenix [32] is another state-of-art de-
compiler, which uses semantics-preserving structural analysis, and it can recon-
struct high-level control flow structure. But all those static methods do not work
on control flow obfuscation programs. Dynamic method can find some control
flow paths through execution. TOP reconstructs control flow structures dynam-
ically [33]. However, path coverage is the main limitation of dynamic method,
since execution can’t find out all paths in CFG.

6 Discussion and Limitation

Since gadgets itself is helpful for ROP attacks, it is dangerous to transform
basic blocks of original programs into gadgets. We prevent reuse of generated
gadgets in two aspects. On one hand, our instrumentation design is unfriendly
to ROP attacks, because our generated gadgets all do the same thing, reading
data from memory addresses. On the other hand, we can implement load-time
basic block level ASLR just like binary stirring [34], as our generated gadgets
are independent from each other. Here, we discuss the potential limitations of
ROPOB:

– Dynamic analysis. As discussed in Sect. 1, ROPOB does not hide con-
trol flow information from dynamic analysis as the operand of indirect jmp
instruction will be shown when executing. We have an idea to defend from
dynamic analysis and show it in Future Work.

– Payload hiding. As shown in Sect. 3, ROPOB puts payload into one data
section named “.payload”. As this section is in the binary, it may raise sus-
picion in static method.

– Compatible with ROP Defense. Since ROPOB makes use of ROP to
obfuscate control flow information, our work should be compatible with ROP
defense schemes. Although ROPOB does not make use of “unintended instruc-
tions” in ROPSTEG [6], there are also CFI security policies which ROPOB
violates.

7 Conclusion and Future Work

In this paper, we design and implement ROPOB, a ROP-based binary obfus-
cation scheme that obfuscates the control flow of programs by chaining basic
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blocks as ROP gadgets. We show that ROPOB can protect programs against
static analysis, effectively and practically.

Here we show our work in future in the aspect of reuse or replace gadgets.
Control flow graphs of functions in original program are independent. If we can
reuse gadgets in our obfuscated programs, or replace the gadgets with gadgets
in the libraries just like ROP attacks, the independence of CFGs will be broken,
and code of each function will interweave together. That will make function
extraction difficult. Thus, we need to analyse functionality of each gadget and
automatically construct ROP payload to replace functionality-equal gadgets [10].
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